
LA-UR-17-27588
Approved for public release; distribution is unlimited.

Title: Duplicating MC-15 Output with Python and MCNP

Author(s): McSpaden, Alexander Thomas

Intended for: Report

Issued: 2018-07-11 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Duplicating MC-15 Output With Python and MCNP
Alex McSpaden

July 9, 2018

Abstract
Two Python scripts have been written that process the output files of MCNP6 into a format that

mimics the list-mode output of Los Alamos National Laboratory’s MC-15, NoMAD, and NPOD neutron
detection systems. This report details the methods implemented in these scripts and instructions on
their use.

1 Introduction
The MC-15, NoMAD and NPOD neutron detection systems all consist of a series of 15 3He tubes, arranged in
rows and embedded in a matrix of high-density polyethylene (HDPE). One of the outputs of a measurement
with these detection systems is an .lmx file, which stores the time a capture interaction happens and in
which tube the neutron was captured. Such a file allows for analysis using correlated neutron methods, such
as determining singles and doubles count rates.

Being able to replicate such a file from simulations would allow for a much more direct comparison between
results of the two, as the same processing methods could then be used on each. To this end, two Python
scripts have been written that run 1MCNP6®[1] and process the particle track output file to create the same
.lmx file that would be output by the detector system. These scripts are intended for use on computing
clusters that use the Slurm[2] job management system, and takes advantage of parallel computing to finish
the computations faster.

2 Theory and Methods
To accomplish the task of running MCNP and automatically creating an .lmx file, a Python script called
multiLMX.py was written. This script submits two jobs to the Slurm resource management system: one to
run MCNP and another to do the particle track processing once the simulation finishes. If multiple MCNP
cases need to be run to get the proper number of total histories simulated, the script creates sub-directories
for each (named case001-caseXXX), assigns a new random number seed to each of these cases, and submits
jobs for these simulations to be run inside those sub-directories. The final particle track processing job uses
another Python script called ptracLMX.py, which reads in the necessary information on the measurement
time from the MCNP outp file, and all of the particle track information from the ptrac file. A flow chart
depicting a high-level overview of the process is shown in Fig. 1.

When MCNP is configured to produce the ptrac output file, it stores, among other data, the time an
event happened and the cell in which that event occurred. In order to create the .lmx file this information
needs to be harvested from the file, rearranged in order of time, and combined into certain time bins. To do
this, the MCNPTools[3] package was used to pull out the information for each of the events, as the package
contains a Python module providing a number of functions for extracting information from the ptrac file.
For the purposes of this script, these functions were used to create a list of all the times and cells that
capture events occurred in, which was then sorted by time in ascending order.

1MCNP and Monte Carlo N-Particle are registered trademarks owned by Los Alamos National Security, LLC, manager and
operator of Los Alamos National Laboratory. Any third party use of such registered trademarks should be properly attributed
to Los Alamos National Security, LLC, including the use of the designation as appropriate. For the purposes of visual clarity,
the registered trademark symbol is assumed for all references to MCNP within the remainder of this paper.

1

Figure 1: An overview of the process for running MCNP and making an .lmx file from the output. Blue
boxes represent processes in multiLMX.py, while yellow boxes represent ptracLMX.py.

The MC-15 records events in “ticks” in time, meaning that in the output, the events are lumped into
consecutive time bins of (typically) 100 or 128 nanosecond width. For example if one tube is hit at 46 ns,
another at 80 ns, and a third at 93 ns, the tick containing those times will record 3 counts. Because of
this, the previously made list of all of the event times needs to be lumped into these ticks. Additionally,
each tube in the system has an associated dead time after an interaction in which it is incapable of having
another. To account for this, the event list was iterated through after sorting by time to make sure no events
happened too close in time to another in the same tube. An NPOD also operates on this tick system, but
with a tick length of one microsecond and a tube dead time of four microseconds, whereas the MC-15 dead
time is typically 1000 nanoseconds. The NoMAD is functionally similar to the MC-15, so the operation and
analysis are similar.

3 Usage Instructions
3.1 multiLMX.py
Running multiLMX.py requires that ptracLMX.py and the input file that is to be run exist within the same
folder. Additionally, the rand card has to be included in the data section of the MCNP input deck. When
multiLMX.py is run, this line in the input file will be replaced by a card telling MCNP to use L’Ecuyer 63-bit
generator number 1 with a randomly assigned seed, so that the simulation cases will not be duplicates of
each other.

On the command line the script has three required and five optional arguments. The three required
arguments are for the name of the input file, the number of cases to be run, and the version of MCNP to be
used. The optional arguments are the time each case will take on the cluster, the dead time of the detector
system, the tick length to be used for analysis, the type of detector system (NPOD, NoMAD, or MC-15),
and whether ptracLMX.py should treat the detectors as linked or separated. A description of these command
line arguments is depicted in Table 1. To specify which version of MCNP is to be run, the user types either
6.1.1 or 6.2, but this is based on what options are currently usable, and can easily be adapted to fit either
updates in MCNP or the versions available. These tell the program to load the 6.1.1beta and 6.2 modules
respectively. For the time that each case will run, the format that must be used is HH:MM:SS. An example
for a simulation to be analyzed in separated mode using the input file input.i that will use version 6.1.1 in
ten cases, each of which will take less than three hours is

2

Table 1: The optional command line arguments used for multiLMX.py
Argument Usage Default Value
--time The time each case will take on the cluster 08:00:00

--deadtime The dead time of a tube in nanoseconds 1000
--tickLength The length of each time tick in nanoseconds 100

--type The type of detector, either ’MC15’ or ’NPOD’ ’MC15’
--linked If two units, either 1 for a linked or 0 for a separated measurement 1 (linked)

python multiLMX.py input.i 10 6.1.1 --time 03:00:00 --linked 0

In order for the script to function, the Python module must be loaded, enabling the use of Python 3.5
features and modules such as NumPy. This can be done with the command

module load python

Also, the NPS listed in the MCNP input file must be the total desired number of histories divided by the
number of cases. For example if 10 million histories need to be run over all the cases, ten of them could be
run with the input file specifying an NPS of 1 million. Running the script multiple times within the same
directory will lead to issues, therefore the directory should be cleaned of any products of a previous run (e.g.
case folders) before a new run can be done.

If the user needs to run the scripts on a system that does not use Slurm, the blocks of statements that
write the Slurm file will need to be modified to fit the standards of whatever resource management system is
being used. If the particular system in use does not support jobs being dependent, meaning that a job is not
entered into the queue until other jobs are finished, then multiLMX.py will need to be further modified to
not submit the final processing job, and ptracLMX.py will have to be run manually. No other modification
to multiLMX.py or ptracLMX.py needs to be done.

3.2 ptracLMX.py
3.2.1 Operating Requirements and Basic Function

For processing the ptrac files produced once the MCNP runs are finished, a job runs executing a Python
script that manufactures the final .lmx file. In order for this script to work, MCNP must be configured to
produce the ptrac file, with the events recorded filtered down to only capture events in the active volume
of the tubes. This script can either process a single ptrac file or multiple if the measurement has too many
histories to fit into the time limit of a node.

While multiLMX.py handles the submission of the processing job automatically, this script can be run
individually if desired. To do so, the Python and MCNPTools modules must be loaded. Part of the
MCNPTools module uses the GCC compilers, so if Intel or other compilers are already loaded for another
application, this will lead to a conflict error keeping the compiler from being loaded. To address this issue,
either purge the modules that are loaded or set your computing environment to ignore this conflict. On Los
Alamos National Laboratory’s HPC clusters, loading these modules and running the script can be done with
the following commands.

module load python
module use /usr/projects/mcnp/modules
module load mcnptools

python ptracLMX.py <any command line arguments>

Since this script is meant to be part of the multiLMX.py framework, the files it processes are assumed to be
similar to those that would be made from multiLMX.py runs. That means the MCNP inputs and output
are in separate sub-directories called case001-caseXXX, and the output file within those directories are
called outp and the particle track files are called ptrac. However, the latest version of this script allows

3

Table 2: Command line arguments used in ptracLMX.py
Argument Usage Default Value
--numCases The number of cases the MCNP run was split into 1
--deadtime The dead time of an individual He-3 tube in nanoseconds 1000

--tickLength The length of each time tick in the detector in nanoseconds 100
--type The type of detector, either ’NOMAD’, ’MC15’ or ’NPOD’ ’NOMAD’

--linked
If two units, either 1 for a linked or 0 for a separated

measurement. 1 (linked)

--offset
The amount of time to skip at the beginning of a simulation

in seconds. 0

–-outp The name of the MCNP output file. ’outp’
–-ptrac The name of the MCNP Ptrac file. ’ptrac’
–-parFile The name of the parameter file, if used. ’ptracLMXparams’

for different names for these files and folders. Additionally, the Python dictionary in the script containing
the cell numbers of the 3He active region must be changed to match the input file used for the simulations.
Failing to do so will result in a fatal error.

The final product of this script is an .lmx file. The header of these files contains text detailing the total
count rate, row ratios, measurement time, and other information pertinent to the measurement that was
either performed or simulated. Following the text header is binary data representing the time of an interaction
in nanoseconds, and which tubes were hit in each time tick. The name of this file indicates the time and
date that it was produced. For example, an .lmx file made at 2:51:30 pm on May 25th, 2017 would be called
2017_05_25_145130.lmx with the time being in the 24-hour clock format. If measurements are performed in
separated mode, two .lmx files will be made that can be identified by a trailing number on the time stamp.
For the previous example, these files would be 2017_05_25_145130_1.lmx and 2017_05_25_145130_2.lmx
for detectors 1 and 2.

3.2.2 Command Line Arguments

The script has multiple command line arguments to handle various parameters of the detector setup. These
arguments include aspects such as detector dead time, tick length, detector type, and if two detectors are
used, whether they were linked or separated. Details of the command line arguments and what they represent
are shown in Table 2. All arguments are optional, and omitting one causes the default value to be used.

If multiple detectors were used in a measurement, the --linked argument decides whether the script
should output one .lmx file for a linked measurement, or two .lmx files where the events are separated based
on the detector they occur in and binned individually. To separate the events in the two detectors, the script
looks at the coordinates of events, and sees if there are coordinates that differ by more than 40 centimeters.
If so, the script stores the first two values found that occur in separate detectors, and subsequent events are
sorted according to which reference coordinate they occur closest to. This means that if the corresponding
tubes in the detectors are less than 40 centimeters apart, the script cannot differentiate between them. If
only one detector was used in a measurement, this argument should be omitted and the default value of 1
will properly handle the binning. An example for a run split over ten cases with two linked NPODs with a
dead time of four microseconds and a tick length of one microsecond follows.

python ptracLMX.py --numCases 10 --deadtime 4000 --tickLength 1000 --type NPOD --linked 1

The offset feature was introduced in version 1.1 to skip a certain amount of time at the beginning of the
simulation. This is meant to better replicate a real measurement, as it is not very common for a neutron
source to start at time zero of a detector run. This could lead to lower than expected count rates at the start
of a simulation, since there has been no chance for source neutrons to multiply and build up to the steady
state before the detector has started. When using this feature it is important to run your simulation for a
longer time period than the desired detection window. For example, if a ten second offset is desired and 300
seconds of counting time is needed, run the MCNP simulation for 310 seconds.

4

Table 3: The required components of the parameter file
Parameter Name Description

numCases The number of simulation cases to analyze.
deadtime The dead time of a detector tube in nanoseconds.

tickLength The tick length of the detector system in nanoseconds.
detType The type of detector (’NPOD’, ’NOMAD’, or ’MC15’).

linked
If multiple detectors, whether the analysis should be linked or separated.

Separated creates a different .lmx file for each detector. Enter 0 for
separate, 1 for linked.

offset The amount of time to be skipped at the beginning of the simulation.

tubeCell
The dictionary for converting the simulation cell number to the tube

number of the detector.
outp The desired names for the outp and Ptrac files (default is ’outp’ and

’ptrac’).ptrac

defaultDirs
In a multiple case run, whether the script-default names of the

subdirectories should be used (e.g. case001-caseXXX). True/False.
dirNames (only if
defaultDirs is

False)

If the subdirectories are not using the default names, a list of strings
representing their names. Example: dirNames = [’meas1’, ’meas2’,

’meas3’]

combPtrac

If a multiple case run, whether or not the data in the Ptrac files should be
combined into a single .lmx file. If the data is not to be combined, a

separate .lmx file will be made for each subdirectory. If a single case run,
must be True. True/False.

3.2.3 Parameter File

Instead of using command line arguments to specify the arguments, the user can now use a parameter file.
If a parameter file is specified, anything input into the command line will be overridden. The required
components are listed in Table 3. If not all of the components are present the file will be ignored and the
command line used instead. The use of this file allows for more customization of the run than if the command
line arguments are used. An example of a parameter file is listed in Appendix C.

4 Validation
4.1 Testing with MC-15/NoMAD
Measurements of the Beryllium-Reflected Plutonium Ball (BeRP Ball) were performed with a single MC-15
at a distance of 50 centimeters from the center of the ball to the front face of the detector. The BeRP ball
is a sphere of mostly 239Pu and ~6% 240Pu that has been commonly used for many subcritical experiments
and benchmarks, in which more information on the characteristics of the source can be found[4, 5, 6, 7].
The measurement was five minutes long, so the input files were made to simulate the appropriate number
of spontaneous fissions and (α, n) reactions matching this time period. The simulation model is intended to
be detailed, and includes the MC-15, the ball, cladding, stand, the cart that they rest on, and the walls and
floor of the room.

Table 4: Comparison of MC-15 simulation results with measured data
Method R1 Difference from

Measured (%)
R2 Difference from

Measured %
Measured 8519.23 ± 4.60 - 1440.64 ± 14.38 -

multiLMX.py 8494.51 ± 6.50 0.3 1455.42 ± 16.92 1.0

5

To run the simulations, the required number of histories was split into 20 cases in order for them to
finish relatively quickly on the computing cluster. Once these jobs were completed, ptracLMX.py was run to
process the detector interactions into an .lmx file. For this simulation, the processing took approximately a
minute and a half to run.

When the .lmx file was created, it was processed by Momentum, a Los Alamos National Laboratory
neutron multiplicity analysis code[8]. This code uses Feynman histograms and their moments to compute the
fit for singles and doubles rates in the detectors, with the uncertainty of that fit based on a covariance matrix.
These results used the random binning method, where a time bin of a certain length was placed randomly
along the event timeline, and the number of events within that timeline counted, and the appropriate bin in
the histogram incremented[9]. The results of the simulation and processing can be seen in Table 3, where it
is compared to the measured result. The table shows that the scripts are quite capable of properly analyzing
the data from MCNP, as both the simulated singles and doubles rates differ from the measured results by a
percent or less.

4.2 Testing with NPOD
A second test case was to replicate the results for a benchmark experiment in which 2 NPODs were used
to measure the BeRP ball reflected with various thicknesses of nickel shells[6]. Getting the results from
this Python script close to that of the benchmark would show that even though the script was intended for
an MC-15, it could still be used to simulate measurements done with an NPOD. Additionally, this would
demonstrate that the script could handle multiple detectors in a separated measurement, meaning that the
output from each detector was analyzed individually.

To do this, the input file for the detailed model was adapted to split into 40 cases to match the mea-
surement time of 10 minutes and run. Since the output of the NPODs was analyzed individually for the
benchmark, the script was run in separated mode to duplicate these results. The count rate moments pro-
duced when the resultant .lmx files were processed with Momentum are compared with the benchmark
measured and MCNP6 results in Table 4. The benchmark data used here can be found in Table 13 for the
measured data, and Table 143 in Reference 6 for the MCNP6 data.

Table 5: Comparison of separated NPOD simulation results with the nickel shell benchmark
Method R1 Difference from

Measured (%)
R2 Difference from

Measured %
Benchmark Measured 21843.04 ± 5.49 - 22679.81 ± 46.08 -
Benchmark Detailed

Model
23060.84 ± 6.96 5.6 25602.97 ± 62.28 12.9

multiLMX.py - 1 22670.40 ± 11.57 3.8 24811.38 ± 84.32 9.4
multiLMX.py - 2 22653.81 ± 11.57 3.7 24797.54 ± 79.69 9.3

As the table shows, the results produced by multiLMX.py are close to the measured and simulated data
from the benchmark. This shows that the scripts are capable of recreated measurements that contain an
NPOD, and those that have multiple detectors not linked together. Running the analysis in ptracLMX.py
took 20 minutes of time on a computing cluster, much longer than the MC-15 test case due to the larger
number of events and separated event array processing.

5 Common Issues
There are a few common causes of errors with the running of ptracLMX.py that can cause some headaches.
If an error or unexpected behavior, it is suggested to make sure that all of the cases of the MCNP problem
finished running. If a problem didn’t finish due to timing out or errors, then ptracLMX will be unable to
determine how many events were printed to the ptrac file. This will cause an index out of bounds error during
the execution of the python script. There are a couple of other oft-encountered errors that the script prints
an error message for. One of which is not including a time distribution in the source. This would effectively
have all source events occurring at time zero, which is not logical for a time-tagged output. Second, without

6

a cut card neutrons may continue their flight paths well outside of the detection window. To stop this, enter
a cut card entry as follows:

cut:n 300E8 j 0

If you encounter any other issues, please inform the author so that updates may be made to future versions.

6 Conclusions
The comparisons between the measured and simulated results show that the scripts multiLMX.py and
ptracLMX.py are capable of faithfully simulating the MC-15 and NPOD neutron detection systems. These
scripts will allow for much easier modeling of measurements with this detection system, as the user only needs
to run one script to have all the simulation and processing job submission done for them. These scripts do
have some limitations, however. One such limitation is that only up to two detectors can be simulated with
the script as it currently exists. Additionally, in order for ptracLMX.py to differentiate between events in
the detectors in a separated measurement, the individual tubes of each need to be more than 40 centimeters
away from each other.

References
[1] J.T. GOORLEY et. al., “Initial MCNP6 Release Overview,” Nuclear Technology, 180, 298-315 (2012).

[2] M. JETTE, M. GRONDONA, “Slurm: Simple Linux Utility for Resource Management,” Proceedings of
ClusterWorld Conference and Expo, San Jose, CA, June 2003.

[3] C.J. SOLOMON, C. BATES, J. KULESZA, “The MCNPTools Package: Installation and Use,” LA-UR-
17-21779, Los Alamos National Laboratory, (2017).

[4] J. HUTCHINSON, D. LOAIZA, “Plutonium Sphere Reflected by Beryllium.” PU-MET-FAST-038, Inter-
national Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03,
Nuclear Energy Agency, Organisation for Economic Co-operation and Development (Sep. 2007).

[5] J. HUTCHINSON, T. VALENTINE, “Subcritical Measurements of a Plutonium Sphere Reflected by
Polyethylene and Acrylic.” Nucl. Sci. Eng., 161, 357-362, 2009.

[6] B. RICHARD, J. HUTCHINSON, “Nickel-Reflected Plutonium-Metal-Sphere Subcritical Measurements.”
FUND-NCERC-PU-HE3-MULT-001, International Handbook of Evaluated Criticality Safety Benchmark
Experiments, NEA/NSC/DOC/(95)03, Nuclear Energy Agency, Organisation for Economic Co-operation
and Development (Sep. 2014).

[7] B. RICHARD, J. HUTCHINSON, “Tungsten-Reflected Plutonium-Metal-Sphere Subcritical Measure-
ments.” FUND-NCERC-PU-HE3-MULT-002, International Handbook of Evaluated Criticality Safety
Benchmark Experiments, NEA/NSC/DOC/(95)03, Nuclear Energy Agency, Organisation for Economic
Co-operation and Development (Sep. 2016).

[8] M. SMITH-NELSON, “Momentum: version 0.36.3,” LANL Software, March 29, 2015.

[9] T. CUTLER, M.A. SMITH-NELSON, J.D. HUTCHINSON “Deciphering the Binning Method Un-
certainty in Neutron Multiplicity Measurements.” LA-UR-14-23374, Los Alamos National Laboratory,
(2014).

Appendix A
The following is the source code for multiLMX, the python script that serves as the framework for submitting
the MCNP simulation jobs.

7

multiLMX.py - a Python 3 script to run multiple cases of MCNP and create a
lmx file based on their outputs to mimic the MC15 response.
written by Alex McSpaden, NEN-2 (mcspaden@lanl.gov)
last edit August 2017

try:
import argparse
import datetime
import sys
import os.path
import atexit
import subprocess as sp
import random as rnd

from datetime import timedelta
except ImportError:

print(’Couldn\’t import modules. Make sure Python and is loaded.’)
print(’to load the module, use the following command:’)
print(’module load python’)

def printTime(start):
print the difference in time between the program start and finish
print(’Time elapsed: ’+str(datetime.datetime.now()-start))

start the clock, and set the printTime function to run at the termination of
this script
start = datetime.datetime.now()
atexit.register(printTime,start)

parse argument for input file
parser = argparse.ArgumentParser(description=’Runs MCNP6 and creates lmx data files’)
parser.add_argument(’inputName’,metavar=’i’,nargs=1, help=’name of MCNP input file’)
parser.add_argument(’numCases’,metavar=’n’,nargs=1, help=’how many cases to run’,

type=int)
parser.add_argument(’version’, metavar=’v’, nargs=1, help=’mcnp version’)
parser.add_argument(’--time’,metavar=’t’, nargs=’?’, help=’cluster walltime’, default=’08:00:00’)
parser.add_argument(’--deadtime’,metavar=’d’, nargs=’?’,

help=’the amount of deadtime in a tube in ns’, default=1000)
parser.add_argument(’--tickLength’,metavar=’t’,nargs=’?’,

help=’how long the tick length is in ns’, default=100)
parser.add_argument(’--type’,metavar=’ty’,nargs=’?’,

help=’type of detector, NPOD or MC15’, default=’MC15’)
parser.add_argument(’--linked’,metavar=’l’,nargs=’?’,

help=’Detectors linked (1) or separated (0)’, default=1)
args = parser.parse_args()

inputFile=str(args.inputName[0])
nCases = args.numCases[0]
version=str(args.version[0])
walltime=str(args.time)
deadtime=args.deadtime
tickLength=args.tickLength
detType=str(args.type)
linked=args.linked

8

check to make sure MCNP version is valid
if version == ’6.1’:

pass
elif version ==’6.1.1’:

version = ’6.1.1’
elif version == ’6.2’:

version = ’6.2’
elif version == ’bleedingedge’:

pass
else:

sys.exit(’Invalid version. Options are: 6.1 6.1.1 6.2 bleedingedge’)

check to make sure ptracLMX.py is in the folder too
if os.path.isfile(’ptracLMX.py’):

print(’ptracLMX IS in folder, continuing on’)
else:

sys.exit(’ptracLMX is missing, stopping’)

job = []
print(’Processed arguments, reading in input file’)
read in MCNP input file
with open(inputFile,’r’) as inp:

mcnpBase = inp.readlines()

parent=os.getcwd()

make the directories for the sub cases and populate
print(’Making subdirectories’)
for i in range(1,nCases+1):

formNum = str(i).zfill(3)
caseNum = ’case’+formNum
os.mkdir(caseNum)

os.chdir(caseNum)

copy over and modify mcnp input files to insert random seeds
with open(caseNum,’w’) as newInp:

for line in mcnpBase:
if ’rand ’ in line:

randNum = 2*rnd.randrange(10000000000)+1
newInp.write(’rand gen=2 seed=’+str(randNum)+’\n’)

else:
newInp.write(line)

make slurm scripts to submit jobs
fileID = ’sub’+formNum
with open(fileID,’w’) as slurmFile:

slurmFile.write(’#!/bin/tcsh\n’)
slurmFile.write(’#SBATCH --time=’+walltime+’\n’)
slurmFile.write(’#SBATCH --nodes=1\n’)
slurmFile.write(’#SBATCH --ntasks-per-node=1\n’)
slurmFile.write(’date\n’)
slurmFile.write(’module purge\n’)

9

slurmFile.write(’module use /usr/projects/mcnp/modules\n’)
slurmFile.write(’module load mcnp6/’+version+’\n’)
slurmFile.write(’module list\n’)
slurmFile.write(’\n’)
slurmFile.write(’/usr/projects/mcnp/mcnpexe inp=’+caseNum+’\n’)

#submit job
output = sp.getoutput([’sbatch ’+fileID])
print(’created and submitted case ’+str(i))
print(output)
output = output.split(’ ’)
#output = list(filter(None,output))
#print(output)
job.append(output[3])
os.chdir(parent)

#print(job)
create string of dependencies to be used in lmx job
dependencylist = ’’
for i in range(0,nCases-1):

dependencylist += str(job[i])+’:’

dependencylist += str(job[nCases-1])

create job to process to LMX using ptracLMX.py
fileID = ’subLMX’
with open(fileID,’w’) as lmxSub:

lmxSub.write(’#!/bin/tcsh\n’)
lmxSub.write(’#SBATCH --time=00:30:00\n’)
lmxSub.write(’#SBATCH --nodes=1\n’)
lmxSub.write(’#SBATCH --ntasks-per-node=1\n’)
lmxSub.write(’#SBATCH --dependency=afterok:’+dependencylist+’\n’)
lmxSub.write(’date\n’)
lmxSub.write(’module purge\n’)
lmxSub.write(’module load python\n’)
lmxSub.write(’module use /usr/projects/mcnp/modules\n’)
lmxSub.write(’module load mcnptools\n’)
lmxSub.write(’module list\n’)
lmxSub.write(’\n’)
lmxSub.write(’python ptracLMX.py --numCases ’+str(nCases)+’ --deadtime ’

+str(deadtime)+’ --tickLength ’+str(tickLength)+’ --type ’+
detType+’ --linked ’+str(linked))

lmxSub.write(’\n’)
lmxSub.write(’ls -lh’)

output = sp.getoutput([’sbatch ’+fileID])
print(output)
print(’Above is job for final LMX creation’)

10

Appendix B
Once the MCNP runs finish, the python script ptracLMX is used to turn the output files into the final .lmx
file. Its source code follows.

ptracLMX.py version 1.1 - a script to make a single LMX file out of the multiple ptrac
files created during a pstudy run
written by Alex McSpaden, NEN-2, last edit April 2018
send feedback/bug reports to mcspaden@lanl.gov

CELL NUMBER --> TUBE NUMBER DICT
cell numbers for tubes - change depending on model
what follows is a rough ASCII sketch of tube numbers as used here
14 15
8 9 10 11 12 13
1 2 3 4 5 6 7
if the detector in use is an NPOD, the tube numbers used for this script
are as follows
9 10 11 12 13 14 15
1 2 3 4 5 6 7 8
make dictionary of cell numbers : tube numbers, edit if necessary for model
tubeCell = {227:1, 228:2, 229:3, 230:4, 231:5, 232:6, 233:7, 234:8,

235:9, 236:10, 237:11, 238:12, 239:13, 240:14, 241:15}
the above dict will be overwritten if a parameter file is used

try:
import argparse
import datetime
import sys
import os
import math as m
import numpy as np
from mcnptools import Ptrac
from time import localtime, strftime

except ImportError:
print(’Couldn\’t import modules. Make sure Python and mcnptools are loaded.’)
print(’to load the modules, use the following commands:’)
print(’module load python’)
print(’module use /usr/projects/mcnp/modules’)
print(’module load mcnptools’)
print(’put the above in your slurm launch script’)

define function to modify binary string based on an event happening in a tube
def modifyBin(currentString, tubeNumber):

function takes in the current string as it is and modifies it based on
which tube had the count
in binary, each tube is represented by the last 15 digits in the binary
version of an uint32. To mark that a tube has fired, increase by the amount
that corresponds to that tube’s place in the binary number
For example, to mark that the third tube has fired, change third to last
binary digit to one, so add 2^2, as last digit is 2^0.
return currentString+(2**(tubeNumber-1))

def readOutP(eventsSoFar, outp):

11

function that reads that outp file currently in the folder, and returns
the number of events that have been written to the corresponding ptrac
file
with open(outp,’r’) as mcOut:

while True:
line = mcOut.readline()
if not line: break
if ’binary file’ in line:

ptracInfo = line.split(’ ’)
ptracInfo = list(filter(None,ptracInfo))
eventsSoFar = eventsSoFar + int(ptracInfo[5])

if ’for source variable tme’ in line:
skip the next six lines
for i in range(6):

line = mcOut.readline()
read the next line, split it into a list of strings, get rid of
spaces, convert the specific index into an integer, and divide
by 1E8 to convert from shakes to seconds
line = mcOut.readline()
totalTime = line.split(’ ’)
totalTime = int(float(list(filter(None,totalTime))[1]))
totalTime = totalTime /1E8

try:
return {’updEvents’:eventsSoFar,’countTime’:totalTime}

except UnboundLocalError:
print(’MCNP input file lacks a time distribution in the source\n’)
print(’LMX files are time dependent files, so tme distribution needed\n’)
print(’If source does have tme distribution, print table 10\n’)
sys.exit()

def rowCounts(tube, detType, rows):
function to increment the proper row counter for the detector
if detType == ’NPOD’:

if tube < 9:
rows[0] += 1

else:
rows[1] += 1

elif detType == ’MC15’ or detType == ’NOMAD’:
if tube < 8:

rows[0] += 1
elif tube < 14:

rows[1] += 1
else:

rows[2] += 1
return rows

def sortDT(eventArr, length):
clean dead time rejected events from array
print(’Sorting out dead time rejected events’)
i = 0
rejects = 0
while i < length-1:

go through each event and look ahead to find events that happen within
the detector dead time and the same tube. When such an event is found,

12

set the tube number to zero so it is ignored by the writing loop later
j = 1
cTube = eventArr[i][0] # current tube
cTime = eventArr[i][1] # current time
if cTube != 0:

while eventArr[i+j][1]-cTime < deadtime:
if eventArr[i+j][0] == cTube: # in the same tube and within deadtime

eventArr[i+j][0] = 0
rejects +=1

j += 1
if i+j >= length:

break
i+=1

return rejects

now go through and create the event array eventArr
for separate ptrac cases, could add a dimension on to eventArr
however ptracEvents will not be the same size for all cases, will definitely
need to turn everything below into a function
def collectAndWrite(ptracEvents, ptracFile, detType, linked, offset, tubeCell, nCases, totalTime):

if linked:
eventArr = np.zeros((int(ptracEvents),2))

else:
eventArr = np.zeros((int(ptracEvents),5))
eventArr1 = np.zeros((int(ptracEvents),2))
eventArr2 = np.zeros((int(ptracEvents),2))

[tube, time, x, y, z]
if detType == ’NPOD’:

rows=[0,0]
else:

rows=[0,0,0]
fill array with entries for events
with open(’plout.txt’,’w’) as plo:

plo.write(’Reading Ptrac file(s)\n’)
print(’Reading Ptrac file(s)\n’)
index = 0
if nCases > 1:

for i in range(1,nCases+1):
dirName=’case’+str(i).zfill(3)
parent=os.getcwd()
os.chdir(dirName)
pFile = Ptrac(ptracFile)
hists = pFile.ReadHistories(10000)
while hists:

for h in hists:
get the number of events and iniitalize event counter
numEvents = h.GetNumEvents()
evNum = 0
event = h.GetEvent(evNum)
get the cell the event occurs in
try:

tube = tubeCell[event.Get(Ptrac.CELL)]
except KeyError:

sys.exit(’Tube number dict wrong, update for model’)

13

rows = rowCounts(tube,detType,rows)
get time in ns (MCNP outputs shakes)
time = (10 * event.Get(Ptrac.TIME)) - offset
determine if time is after offset
if offset == 0 or time > 0:

eventArr[index,0]= tube
eventArr[index,1]= time
#print(tube)
if not linked:

eventArr[index,2]= event.Get(Ptrac.X)
eventArr[index,3]= event.Get(Ptrac.Y)
eventArr[index,4]= event.Get(Ptrac.Z)

index += 1
grab the rest of the events in this history

while evNum < numEvents - 1:
evNum += 1
event = h.GetEvent(evNum)
tube = tubeCell[event.Get(Ptrac.CELL)]
rows = rowCounts(tube,detType,rows)
time = (10 * event.Get(Ptrac.TIME)) - offset
if offset == 0 or time > 0:

eventArr[index,0] = tube
eventArr[index,1] = time
if not linked:

eventArr[index,2]= event.Get(Ptrac.X)
eventArr[index,3]= event.Get(Ptrac.Y)
eventArr[index,4]= event.Get(Ptrac.Z)

index += 1
hists = pFile.ReadHistories(10000)

os.chdir(parent)
else:

pFile=Ptrac(ptracFile)
hists = pFile.ReadHistories(10000)
while hists:

for h in hists:
get the number of events and iniitalize event counter
numEvents = h.GetNumEvents()
evNum = 0
event = h.GetEvent(evNum)
get the cell the event occurs in
try:

tube = tubeCell[event.Get(Ptrac.CELL)]
except KeyError:

sys.exit(’Tube number dict wrong, update for model’)
rows = rowCounts(tube,detType,rows)

get time in ns (MCNP outputs shakes)
time = (10 * event.Get(Ptrac.TIME)) - offset
if offset == 0 or time > offset:

eventArr[index,0]= tube
eventArr[index,1]= time
if not linked:

eventArr[index,2]= event.Get(Ptrac.X)

14

eventArr[index,3]= event.Get(Ptrac.Y)
eventArr[index,4]= event.Get(Ptrac.Z)

index += 1
grab the rest of the events in this history
while evNum < numEvents - 1:

evNum += 1
event = h.GetEvent(evNum)
tube = tubeCell[event.Get(Ptrac.CELL)]
rows = rowCounts(tube,detType,rows)
time = (10 * event.Get(Ptrac.TIME)) - offset
if offset == 0 or time > 0:

eventArr[index,0] = tube
eventArr[index,1] = time
if not linked:

eventArr[index,2]= event.Get(Ptrac.X)
eventArr[index,3]= event.Get(Ptrac.Y)
eventArr[index,4]= event.Get(Ptrac.Z)

index += 1
hists = pFile.ReadHistories(10000)

at this point, should have an array that holds all the events
now to sort it by time
plo.write(’Sorting events by time\n’)
print(’Sorting events by time\n’)
eventArr=eventArr[eventArr[:,1].argsort()]

separate events into separate arrays
if not linked:

if 17 in eventArr[:,0]:
i = 0
c1 = 0
c2 = 0
plo.write(’separating based on cell number’)
print(’Separating based on cell number’)
while i < index-1:

compare based on tube numbers
if eventArr[i,0] > 16:

eventArr2[c2,:] = eventArr[i,0:2]
c2 += 1

else:
eventArr1[c1,:] = eventArr[i,0:2]
c1 += 1

i += 1
print(c1, c2)
eventArr1=eventArr1[~np.all(eventArr1==0, axis=1)]
eventArr2=eventArr2[~np.all(eventArr2==0, axis=1)]

else:
print(’Separating based on detector position’)
plo.write(’Separating based on detector position’)
i=1 # counter for eventArr
c1 = 1 # counter for eventArr1
c2 = 0 # counter for eventArr2
iterate through and decide if event belongs to detector 1,
which is the first detector and event is picked up in, or 2

15

get first x,y,z coords
x = [eventArr[0,2], -999]
y = [eventArr[0,3], -999]
z = [eventArr[0,4], -999]
eventArr1[0,:] = eventArr[0,0:2]
while i < index-1:

#compare corrdinates of event to detector 1 coords
xDist = abs(eventArr[i,2] - x[0])
yDist = abs(eventArr[i,3] - y[0])
zDist = abs(eventArr[i,4] - z[0])
if (xDist > 40) or (yDist > 40) or (zDist > 40):

event is in second detector
if xDist > 40 and x[1] == -999:

plo.write(’Noticed detectors differ in x-axis\n’)
print(’Noticed detectors differ in x-axis’)
x[1] = eventArr[i,2]
detectors differ in x-axis

if (yDist > 40) and (y[1] == -999):
plo.write(’Noticed detectors differ in y-axis\n’)
print(’Noticed detectors differ in y-axis’)
y[1] = eventArr[i,3]

if (zDist > 40) and (z[1] == -999):
plo.write(’Noticed detectors differ in z-axis\n’)
print(’Noticed detectors differ in z-axis’)
z[1] = eventArr[i,4]

eventArr2[c2,:] = eventArr[i,0:2]
c2 += 1

else:
#event is in detector 1
eventArr1[c1,:] = eventArr[i,0:2]
c1 += 1

i += 1

make the filename of the file
fileID = datetime.date.today()
timestarted=strftime("%H%M%S", localtime())
dateForm=fileID.strftime(’%Y_%m_%d’)
fileID =dateForm +’_’+timestarted+’.lmx’
if linked:

fileID = dateForm+’_’+timestarted+’.lmx’
else:

fileID1 = dateForm+’_’+timestarted+’_1.lmx’
fileID2 = dateForm+’_’+timestarted+’_2.lmx’

if detType == ’MC15’ or detType == ’NOMAD’:
rr12 = rows[0]/rows[1]
rr13 = rows[0]/rows[2]
rr23 = rows[1]/rows[2]

else:
rr12 = rows[0]/rows[1]
rr13 = 0
rr23 = 0

16

run functions to clean dead time rejected events
if linked:

rejects = sortDT(eventArr, eventArr.shape[0])
r1 = (index-rejects)/totalTime

else:
rej1 = sortDT(eventArr1, eventArr1.shape[0])
r1d1 = (c1-rej1)/totalTime
rej2 = sortDT(eventArr2, eventArr2.shape[0])
r1d2 = (c2-rej2)/totalTime

print(’Calling function to write .LMX file...’)
plo.write(’Calling function to write .LMX file...\n’)
call function to write LMX file
if linked:

writeLMX(eventArr,fileID, rr12, rr13, rr23, linked, r1, detType, totalTime)
else:

writeLMX(eventArr1,fileID1, rr12, rr13, rr23, linked, r1d1, detType, totalTime)
writeLMX(eventArr2,fileID2, rr12, rr13, rr23, linked, r1d2, detType, totalTime)

def writeLMX(writeArr, fileID, rr12, rr13, rr23, linked, r1, detType, totalTime):
write header of .LMX file
with open((fileID),"wb") as lmxFile:

length = writeArr.shape[0]
print(’Writing .LMX file’)
print(’This detector saw ’, writeArr.shape[0], ’ events.’)
doARoll = False
different binary event flags that can be seen in .LMX files
eventFlag = b’\x00\x00\x00\x00’
clockRollFlag = b’\x01\x00\x00\x00’
gateStartFlag = 0x00000002
gateEndFlag = 0x00000003
eofFlag = b’\xFF\xFF\xFF\xFF’
lmxFile.write(b’ListModeDataFileVersion : 1.06\r\n’)
lmxFile.write(b’InstrumentType : Neutron Multiplicity\r\n’)
if detType == ’NOMAD’:

lmxFile.write(b’InstrumentModel : NoMAD\r\n’)
lmxFile.write(b’SerialNumber : S/N LANL 001\r\n’)
lmxFile.write(b’HardwareVersion : MB6-E17P\r\n’)

if detType == ’MC15’:
lmxFile.write(b’InstrumentModel : MC-15\r\n’)
lmxFile.write(b’SerialNumber : S/N LANL 001\r\n’)
lmxFile.write(b’HardwareVersion : MB6-E17P\r\n’)

else:
lmxFile.write(b’InstrumentModel : NPOD\r\n’)

lmxFile.write(b’MeasurementID : ’+fileID.encode(’utf-8’)+b’\r\n’)
lmxFile.write(b’MeasurementDescription : Simulated Measurement\r\n’)
lmxFile.write(b’MeasurementMode : Single\r\n’)
if linked:

lmxFile.write(b’FrontPanelConfig : Together\r\n’)
else:

lmxFile.write(b’FrontPanelConfig : Separate\r\n’)
lmxFile.write(b’AnalysisChannels : 0x00007FFF\r\n’)
lmxFile.write(b’DateStart : ’+

str(datetime.date.today()).encode(’utf-8’)+b’\r\n’)

17

lmxFile.write(b’TimeStart : ’+
str(datetime.datetime.now().time()).encode(’utf-8’)+
b’\r\n’)

lmxFile.write(b’DurationRealTime : ’+
str(totalTime).encode(’utf-8’)+b’ [s]\r\n’)

lmxFile.write(b’InternalScaler : ’+
str(length).encode(’utf-8’)+b’\r\n’)

lmxFile.write(b’FifoLostCounts : 0\r\n’)
lmxFile.write(b’AverageCountRate : ’+

str(round(r1,2)).encode(’utf-8’)+b’ [counts/s]\r\n’)
lmxFile.write(b’DistanceDetFaceToSource : See Input\r\n’)
lmxFile.write(b’DistanceDetCenterToFloor : See Input\r\n’)
lmxFile.write(b’FirmwareChannelDeadtime : ’+str(deadtime).encode(’utf-8’)+

b’ [ns]\r\n’)
if detType == ’MC15’ or detType == ’NOMAD’:

lmxFile.write(b’RowRatio : ’+str(rr12).encode(’utf-8’)+b’\r\n’)
lmxFile.write(b’RowRatio(1/3) : ’+str(rr13).encode(’utf-8’)+b’\r\n’)
lmxFile.write(b’RowRatio(2/3) : ’+str(rr23).encode(’utf-8’)+b’\r\n’)

else:
lmxFile.write(b’RowRatio : ’+str(rr12).encode(’utf-8’)+b’\r\n’)

lmxFile.write(b’Comment : ’+
b’If all channels are zero, this indicates channels\r\n’)

lmxFile.write(b’Comment : ’+
b’in next event is a flag (not a real event)\r\n’)

lmxFile.write(b’Comment : ’+
b’Flag = 0x00000001 (Clock rollover occurred)\r\n’)

lmxFile.write(b’Comment : ’+
b’Flag = 0x00000002 (Gate input started)\r\n’)

lmxFile.write(b’Comment : ’+
b’Flag = 0x00000003 (Gate input ended)\r\n’)

lmxFile.write(b’Comment : ’+
b’Flag = 0xFFFFFFFF (End of binary data)\r\n’)

lmxFile.write(b’BinaryDataEventSizeInBytes : 8\r\n’)
lmxFile.write(b’BinaryDataChannelFormat : unsigned int32\r\n’)
lmxFile.write(b’BinaryDataClockFormat : unsigned int32\r\n’)
lmxFile.write(b’BinaryDataClockTickLength : ’+

str(tickLength).encode(’utf-8’)+b’ [ns]\r\n’)
lmxFile.write(b’BinaryDataActiveChannels : 0x0000FFFF\r\n’)
lmxFile.write(b’BinaryDataFollows : ’)

pad the file with spaces until needed length is reached
while (lmxFile.tell()-14)%16 !=0:

lmxFile.write(b’ ’)
lmxFile.write(b’\r\n’)

iterate over the whole array to lump together ticks and
filter events for dead time rejection
clockRolls=0
i=0
while i < length-1:

if writeArr[i][0] == 0:
i += 1
continue

18

find the tick number and initialize binary string
tick = m.ceil(writeArr[i][1]/tickLength)
tubeString = modifyBin(0,int(writeArr[i][0]))
look forward in the events for dead time and tick lumping
j=1
past=False
while not(past):

if (i+j)<length-1:
if the end of the array hasn’t been reached yet
if (writeArr[i+j][0] == 0):

event was deadtime rejected, skip
j += 1

elif (writeArr[i+j][0] != writeArr[i][0]) and
(tick == m.ceil(writeArr[i+j][1]/tickLength)):
the tick corresponding to the next event is the same as
the current event, and should be lumped in
tubeString = modifyBin(tubeString,int(writeArr[i+j][0]))
j +=1

elif (writeArr[i+j][1] >= (totalTime * 1E9)):
next event is beyond measurement time, stop writing
i=length # make sure events stop being processed
past = True

else:
event is neither to be rejected by deadtime or to be
lumped in with current. Therefore it is to become the new
current event
check for a clock rollover
past = True
nextTick = m.ceil(writeArr[i+j][1]/tickLength)
if m.ceil(tick/maxInt) < m.ceil(nextTick/maxInt):

clock rollover is happening
doARoll = True

else:
past = True # since i+j goes past the number of events

increment i so that the next iteration starts on the next "new" event
i += j
write the current tube string and tick to the lmx file
lmxFile.write(tubeString.to_bytes(4,byteorder=sys.byteorder,signed=False))
writeTick = tick - (clockRolls*maxInt)
lmxFile.write(writeTick.to_bytes(4,byteorder=sys.byteorder,signed=False))
if a clock rollover just happened, increment clock rolls and print
the event flags
if doARoll:

#print(’roll’)
#print(tick)

lmxFile.write(eventFlag)
lmxFile.write(writeTick.to_bytes(4,byteorder=sys.byteorder,signed=False))
lmxFile.write(clockRollFlag)
lmxFile.write(writeTick.to_bytes(4,byteorder=sys.byteorder,signed=False))
clockRolls+=1
doARoll = False

19

endTick=m.ceil((totalTime*1E9)/tickLength)-(clockRolls*maxInt)
#print(endTick)
#print(writeArr[-1,1])
#print(clockRolls)
#print(maxInt)
lmxFile.write(eventFlag)
lmxFile.write(endTick.to_bytes(4,byteorder=sys.byteorder,signed=False))
write the EOF flag
lmxFile.write(eofFlag)
lmxFile.write(endTick.to_bytes(4,byteorder=sys.byteorder,signed=False))

largest number that can be represented by a uint32
maxInt = 4294967295
doARoll = False

parser = argparse.ArgumentParser(description=’Goes through the multiple ptrac’+
’ files and makes an lmx file, the use of a parameter’+
’ file is recommended instead of command line arguments.’+
’ The parameter file is also where the tube number’+
’ assignment dict and options for subdirectory’+
’ naming is located. Please direct any’+
’ questions or bug reports to mcspaden@lanl.gov’)

parser.add_argument(’--numCases’,metavar=’n’,nargs=’?’,help=’how many cases were run’,
type=int, default=1)

parser.add_argument(’--deadtime’,metavar=’d’, nargs=’?’,
help=’the amount of deadtime in a tube in ns’, default=1000)

parser.add_argument(’--tickLength’,metavar=’t’,nargs=’?’,
help=’how long the tick length is in ns’, default=100)

parser.add_argument(’--type’,metavar=’ty’,nargs=’?’,
help=’NPOD, NOMAD, or MC15’, default=’NOMAD’)

parser.add_argument(’--linked’,metavar=’l’,nargs=’?’,
help=’Detectors linked (1) or separated (0)’, default=1)

parser.add_argument(’--parFile’, metavar=’pf’, nargs=’?’,
help=’Name of parameter file including args and other info’,
default=’ptracLMXparams’)

parser.add_argument(’--offset’, metavar=’o’, nargs=’?’,
help=’Number of seconds to skip at beginning of simulation’+
’ NOTE!: If you are going to use an offset, ensure your’+
’ simulation time duration is the desired measurement’ +
’ time plus the offset. e.g. a simulation for a 300s measurement’ +
’ plus a 5s offset should be 305s.’,
default=0)

parser.add_argument(’--outp’, metavar=’op’, nargs=’?’,
help=’Name of the output file (default outp)’, default=’outp’)

parser.add_argument(’--ptrac’, metavar=’pt’, nargs=’?’,
help=’Name of the ptrc file default ptrac)’, default=’ptrac’)

args = parser.parse_args()
nCases = int(args.numCases)
deadtime=int(args.deadtime)
tickLength=int(args.tickLength)
detType=args.type
linked=bool(int(args.linked))
parFile = args.parFile
offset= int(args.offset) * 1E9 # convert to nanoseconds

20

outp=args.outp
ptracFile=args.ptrac

default values for items in parameter file
defaultDirs = True
combPtrac = True

try:
module = __import__(parFile)
nCases = module.numCases
deadtime = module.deadtime
tickLength = module.tickLength
detType = module.detType
linked = module.linked
offset = module.offset * 1E9
tubeCell = module.tubeCell
outp = module.outp
ptracFile = module.ptrac
defaultDirs = module.defaultDirs
if not defaultDirs:

dirNames = module.dirNames
combPtrac = module.combPtrac

except:
print(’Parameter file either not present or incomplete, using command arguments\n’)

if detType == ’MC15’ or detType == ’NPOD’ or detType == ’NOMAD’:
pass

else:
sys.exit(’Detector type invalid, enter either \’NPOD\’, \’NOMAD\’ or \’MC15\’’)

if defaultDirs and nCases > 1:
dirNames = [’’] * nCases
for i in range(0,nCases):

dirNames[i] = ’case’+str(i+1).zfill(3)
#print(dirNames[i])

if not defaultDirs and nCases == 1:
sys.exit(’You don\’t need to name a single directory, run this there.’)

first step, look in all the outp files to see how many events need to be counted

if not combPtrac:
ptracEvents = np.zeros([nCases]) #initialize

else:
ptracEvents = np.zeros([1])

if nCases > 1:
for i in range(0,nCases):

parent=os.getcwd()
if combPtrac:

21

os.chdir(dirNames[i])
readValues = readOutP(ptracEvents, outp)
ptracEvents = readValues[’updEvents’]
os.chdir(parent)

else:
os.chdir(dirNames[i])
print(’Moved into directory ’, dirNames[i])
readValues = readOutP(ptracEvents[i], outp)
ptracEvents[i] = readValues[’updEvents’]
print(’Processing ’, ptracEvents[i], ’events’)
totalTime = readValues[’countTime’] - (offset/1E9)
collectAndWrite(ptracEvents[i], ptracFile, detType, linked,

offset, tubeCell, 1, totalTime)
os.chdir(parent)

else:
readValues = readOutP(ptracEvents, outp)
ptracEvents = readValues[’updEvents’]

totalTime = readValues[’countTime’] - (offset/1E9)
print(’Processing ’, ptracEvents, ’ events’)

call functions to collect and collate the data, and write the .LMX file
if combPtrac:

collectAndWrite(ptracEvents, ptracFile, detType, linked,
offset, tubeCell, nCases, totalTime)

Appendix C
Below is an example of a parameter file to be used with the ptrac processing script.

parameter file for ptracLMX.py

can contain (and will overwite) any of the command line arguments these inlcude
number of cases to combine
numCases=1

dead time in the detector
deadtime = 256

the tick length of the detector
tickLength = 100

the type of detector (’NPOD’, ’NOMAD’ or ’MC15’)
detType = ’NOMAD’

if multiple detectors, whether they are linked (1) or seperated (0)
linked = 1

the time offset, or number of seconds at the beginning of the measurement
that should be skipped

22

!!!!!!!!
NOTE!: If you are going to use an offset in your measurement, ensure that you
extend the time duration of your simulation enough so that you end up with
the proper duration in the final data file
For example, if you want a 600 second measurement with a five second offset,
have your simulation 605 seconds.
!!!!!!!!
offset = 0

will also contain the tube number dict for converting the model cell numbers
to the detector tube numbers
cell numbers for tubes - change depending on model
what follows is a rough ASCII sketch of tube numbers as used here
14 15
8 9 10 11 12 13
1 2 3 4 5 6 7
if the detector in use is an NPOD, the tube numbers used for this script
are as follows
9 10 11 12 13 14 15
1 2 3 4 5 6 7 8
make dictionary of cell numbers : tube numbers, edit if necessary for model
tubeCell = {800:1, 801:2, 802:3, 803:4, 804:5, 805:6, 806:7, 807:8,

808:9, 809:10, 810:11, 811:12, 812:13, 813:14, 814:15, 815:17,
816:18, 817:19, 818:20, 819:21, 820:22, 821:23, 822:24, 823:25,
824:26, 825:27, 826:28, 827:29, 828:30, 829:31}

if there are two detectors with distinct cell numbers (i.e. did not use
universe fills) then populate the dict with those cells as tubes 17-31.

may also contain the name of the output and ptrac files to be processed
the default is ’outp’ and ’ptrac’
outp=’outp’
ptrac=’ptrac’

options for how the subdirectories are named in multiple case runs
and whether those multiple cases should be combined or left separate
default is case001-caseXXX, if other names are desired, make defaultDirs False
and create a list of strings that represent the desired names
e.g. [’dir1’ ’dir2’ ’dir3’] etc.
defaultDirs = True

if defaultDirs = False, enter a list of strings like the one below
dirNames = [’case010’, ’case011’, ’case012’, ’case013’, ’case014’, ’case015’]
except with your directory names

whether the separate ptrac files should be combined or left separated
combPtrac = True

23

